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Abstract. Formal methods such as Z and Petri nets can be used to
specify invariants that should hold during the execution of component-
based applications such as those regarding changes in the architecture
of the application and valid sequences of architecture reconfigurations.
Integrating logic for checking and enforcing these invariants into the
application’s implementation is generally done by adding appropriate
control code to the functional application code. In this paper, we discuss
several limitations of this approach that may ensue in a disconnection
between the application implementation and its formal specification.

To solve these problems, we propose an approach for the control of
component-based distributed applications, which combines formal meth-
ods and Aspect-Oriented Programming. In this approach, we use the Z
notation for describing the architectural invariants of the application
and Petri nets for modeling coordination protocols. At the implementa-
tion level, the formal specification is mapped to an aspect-based control
layer, which is generated automatically. Aspects intercept architecture
reconfiguration events and check according to the formal specification
and the coordination protocol whether the reconfiguration events can be
performed.

1 Introduction

The software applications of today’s organizations consist generally of several
distributed software components. Such applications are characterized by a dy-
namic architecture, which evolves over the time. For instance, new components
may be added and existing connections between the components may be modified
during execution. When such reconfigurations are done it is necessary to ensure
that no faults are caused and that the software application works correctly.

To guarantee the reliability and consistency of the architectural evolution
of distributed component-based applications, we propose using formal specifica-
tions. In this way, one could define the architectural constraints and coordina-
tion protocols that must be fulfilled by each reconfiguration of the application.
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Integrating logic for checking and enforcing architectural constraints and coor-
dination protocols into the application’s implementation is generally done by
adding appropriate control code to the functional application code, as shown
in [15, 16, 19]. These approaches provide the necessary control functionality, but
they exhibit several limitations, which may ensue in a disconnection between the
application implementation and its formal specification.

First, the control code that implements the constraints is written manually
in these approaches. Second, this control code is not well-modularized as it is
tangled with the functional code of the application and scattered across the
implementation of different components. Third, the code that implements the
constraints may contain contradictions that did not exist in the formal specifi-
cation. This is accentuated especially by the scattering problem. Fourth, if the
formal specification changes, it is necessary to change the code that implements
the constraints manually.

To solve these problems, we propose a novel approach for the control of
component-based distributed applications, which combines formal methods and
Aspect-Oriented Programming (AOP) [11]. This approach cover the static, the
dynamic, and the behavioral aspects of the evolution of software architectures.
It fosters an organization of distributed component-based software systems in
three layers: the formal specification level, the functional level, and the control
level. In the formal layer, the user specifies the constraints that should be ful-
filled when the application evolves: architectural constraints are specified using
the Z notation and coordination protocols are specified using Petri nets. In the
functional layer, the user writes the functional code of the different components
in Java. This code does not contain any control logic. In the control layer, we
provide a tool that automatically generates a set of AspectJ aspects, which in-
tercept reconfiguration events and check according to the formal specification
whether the reconfiguration events can be performed.

This approach yields several benefits. It enables a more reliable control of
the architectural evolution of component-based applications as it is based on
formal methods. Moreover, since the control aspects are generated automati-
cally, mismatches between the implementation of the application and its formal
specification are less probable. In addition, the control code of the component-
based distributed application becomes more reusable as it is well-modularized
in aspects.

The remainder of this paper is organized as follows. In Section 2, we introduce
the Z specification language, Petri nets, and Aspect-Oriented Programming. In
Section 3, we present our approach to controlling the evolution of component-
based applications. In Section 4, we explain the formal specification of software
architecture of component-based applications. Section 5 describe the mapping
formal specification to aspect and the aspect generation. Section 6 reports on
some related work and Section 7 concludes this paper.
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2 Background

In this paper, we make use of two well-known formal methods, namely Z and
Petri nets, for specifying respectively architectural styles and coordination pro-
tocols in component-based applications. In addition, we use Aspect-Oriented
Programming for modularizing the control and coordination code.

2.1 The Z specification language

The Z notation [20] is a formal specification language. Z defines a mathemati-
cal language, a schema language, and a refinement theory between abstract data
types. The mathematical language is based on the set theory and on mathemati-
cal logic, i.e., first-order predicate logic. The schema language allows to describe
the state of a system and how this state can change. The refinement theory
allows to develop a system by building an abstract model from a system design.

A specification in Z can be defined as a collection of state schemes and oper-
ation schemes. The state schema State describes the system state and the invari-
ant relationships, which should be maintained when the system is updated. This
schema consists of two parts: a declaration part and a predicate part. The latter
defines constraints and specifies the values of the variables that are declared in
the declaration part. The operation schemes define the possible operations in the
system, the relationship between their inputs and outputs, and the state changes
resulting from their execution. The operation schema Operation comprises the
state State before and the state State ′ after performing the operation. These two
states are represented in the schema language by the ∆State.

State
Declarations

Predicates

Operation
∆State

....

To validate a Z specification, we use the tool Z-EVES [12], which is an ad-
vanced analysis tool that supports syntax and type checking as well as theorem
proving of Z specifications.

2.2 Petri nets

Petri nets [17] are a graphical and mathematical tool to model and analyze
discrete systems. In Petri nets, the states of a system are modeled using places
and tokens. The events are represented using transitions between places.

Formally, a Petri net can be defined as a 5-tuple < P ,T ,F ,W ,M0 >, where:
P = {p1, ...pm} is a finite set of places; T = {t1, ...tn} is a finite set of transitions
with (P ∩ T ) = ∅ and (P ∪ T ) 6= ∅; F ⊆ (P × T ) ∪ (P × T ) is a set of arcs;
W : F → N1 is a weight function and M0 : P → N is an initial marking where
for each place p ∈ P there are n ∈ N tokens.

The system behavior can be described in terms of the system state and its
changes. To simulate the dynamic behavior of the system, the state or marking
will be changed according to the following rules:
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– A transition t is enabled, if each input place pi is marked with at least
W (pi , t) tokens.

∀ pi ∈ •t ,M (pi) ≥ W (pi , t). (R1)

– If a transition t is enabled for the marking M then the enabling of t will
lead to the new marking M ′:

∀ pi ∈ •t ,M ′(pi) = M (pi)−W (pi , t) + W (t , pi) (R2)

where W (Pi , t) is the weight of the arc (Pi , t); W (t ,Pi) is the weight of the arc
(t ,Pi) and •t is the set of input places of the transition t .

To model coordination protocols with Petri nets, we use the tool P3 [6], which
supports the creation, the modeling of Petri net, and their export to XML.

2.3 Aspect-Oriented Programming

Aspect-Oriented Programming [11] is a programming paradigm, which supports
the modularization of concerns that cut across the implementation of a software
application, such as logging, persistence, and security.

According to the principle of separation of concerns, AOP provides language
means to separate the code that implements a crosscutting concern from the
functional code of a software application. Using AOP, an application consists
of two parts: The base program, which implements the core functionality, and
the aspects, which implement the crosscutting concerns. Aspects are new units of
modularity, which aim at modularizing crosscutting concerns in complex systems
by using join points, pointcuts, and advice.

Join points are well-defined points in the execution of a program. In AspectJ
[10], which is an aspect-oriented extension to Java, join points correspond to
e.g., method calls, constructor calls, field read/write, etc. The pointcut allows
to select a set of join points, where some crosscutting functionality should be
executed.

The advice is a piece of code that implements a crosscutting functionality,
which can be associated with a pointcut. The advice is executed whenever a join
point in the set identified by the pointcut is reached. It may be executed before,
after, or instead of the join point at hand; this corresponds respectively to the
advice types before, after and around in AspectJ. With an around advice, the
aspect can integrate the further execution of the intercepted join point in the
middle of some other code using the keyword proceed .

3 The Approach in a Nutshell

Our approach presumes a three-phased methodology to developing distributed
component-based applications. Applications that are built according to this
methodology have a three-level architecture: the formal specification level, the
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functional level, and the control level. In the following, the methodology and the
architecture will be presented.

In the first phase of this methodology, the user specifies formally the con-
straints that should be satisfied when the architecture of the application evolves.
In the second phase, the user provides the functional code that implements the
different components. In the third phase, the user defines a mapping between
the formal specification of the different reconfiguration operations and the im-
plementation of the application. This mapping will be used by generator, which
emits set of AspectJ aspects that provide the control and coordination function-
alities.

In the specification phase, the Z notation is used to specify static and dy-
namic aspects of the software architecture, such as involved components, their
types and relations, as well as invariants that must hold by any reconfigura-
tion operations that add and/or remove components and/or relations from the
system are defined using the Z notation. Coordination protocols, such as the
constraints on the ordering of some operations, are defined using Petri nets. To
facilitate the interpretation and the extraction of the logical predicates, the Z
specifications are saved in LATEX files using the tool Z-EVES. Moreover, the Petri
nets are saved in matrix form together with the current state of the system (i.e.,
the current marking) in an XML file by using the tool P3.

Accordingly, the architecture of applications that are developed with the
methodology described so far consists of three levels as shown in Figure 1: the
formal specification level, the functional level, and the control level.
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Fig. 1. Overview of the three-level architecture
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To illustrate our approach, we will consider a Java application for collabo-
rative authoring of structured documents. This application consists of shared
documents that are located on a server, and clients that connect to the server to
view and edit these documents. The clients can have two different roles: writers
can modify, create, and delete sections of a document, whereas reviewers can
correct a section and add annotations to it.

We have developed this application using the approach presented in this
section. That is, problems such as overlaps between sections that are accessed
by different client are avoided by specifying appropriate constraints formally (at
the formal specification level) and generating AspectJ aspects (at the control
level) that enforce them.

4 Formal Specification

This section presents the formal specification phase. Three kinds of specifications
are produced and verified in this phase. First, the structure and the behavior
of the individual components as well as the overall architecture of the system
is specified and validated. Second, pre- and post-conditions for reconfiguration
operations are defined and verified to ensure that the specified architectural
style is maintained as the system evolves at runtime. Last but not least, valid
sequences of reconfiguration operations are specified and validated.

4.1 Overall System Specification and Verification

Predicate logic is used to specify static and dynamic properties of individual
components participating in the system following the component specification
template shown below. In this template, atti denotes an attribute, Spri and Dpri
denote static, respectively dynamic properties of a component.

Componenti
att1 : Type1, att2 : Type2....attn : Typen

Spr1, ...,Sprn
Dpr1, ...,Dprn

The overall system specification defines a set of components, the relationships
between them, and the architectural constraints that must be maintained when
the system evolves. In the sample system schema shown below, ci denotes a
component instance, Componenti denotes a component type, relationij denotes
the relation between the Componenti and the Componentj (as represented by
the bidirectional arrow), and Apri denotes an architectural constraint. To verify
the consistency of the system specification, it should be ensured that at least one
valid initial state exists. Using Z-EVES, one can define an InitialisationTheorem
and prove it, whereby System represents the system schema and SystemInit
corresponds to a Z schema that describes the initial system state.
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System

ci : Componenti ;...

cj : FComponentj ;...

relationij : Componenti ↔ Componentj ;...

Apr1, ...Aprn

Theorem InitialisationTheorem

∃System • SystemInit

In the following, we illustrate the system specification step by means of our
collaborative authoring system. As an example, we consider two kinds of com-
ponents in our system: shared documents and sections. A shared document is
accessible to any client that is authorized either as a Writer or as a Reviewer . In
the schema below, the shared document is defined as a sequence of sections that
do not overlap, as specified by the predicate in the lower part of the specification
of a shared document. A section is defined by the position of its first and last
characters in the whole document.

Section
firstCharacter : N
lastCharacter : N

lastCharacter ≥ firstCharacter

SharedDoc
sections : seqSection

∀ i : N | 1 ≤ i < #section
• (section(i + 1)).firstCharacter

= (section(i)).lastCharacter + 1

Next, the collaborative authoring system CollaborativeAuthoringSystem is
specified in the schema below. It consists of finite sets (F) of writers and review-
ers, a shared document and relations between authorized writers/reviewers and
sections of the shared document. Conditions on the relations are preserved by
verifying the domain dom and the range ran of each relation. For illustration,
also the constraints C1 and C2 are given. The constraint C1 states that a writer
or a reviewer can be connected to only one section at any point of time. The
constraint C2 states that two actors (writers or reviewers) are never connected
simultaneously to the same section. These constraints should be obeyed by any
operation that changes the sets of writers or reviewers.

CollaborativeAuthoringSystem

writers : FWriter

reviewers : FReviewer

sharedDoc : SharedDocument

WriterSection : Writer ↔ Section

...

domWriterSection ⊆ writers

ranWriterSection ⊆ {s : Section | s ∈ ran sharedDoc.section}
∀w : writers • #(WriterSection(| {w} |)) ≤ 1 (C1)

∀ r : reviewers; w : writers; s : Section

| s ∈ ran sharedDoc.section (C2)

• (r , s) 6∈ ReviewerSection ∨ (w , s) 6∈ WriterSection

........
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To verify the consistency of the CollaborativeAuthoringSystem schema, we
define an initial system state, InitiCASystem, shown below. The initial state
consists of two writers w1, and w2, one reviewer r1, and a shared document
sd the latter consists of three sections s1, s2, s3. The proof of the consistency
theorem ensures that the specification of our collaborative authoring system is
consistent and does not contain any contradictions.

InitCASystem

CollaborativeAuthoringSystem

writers = {w1,w2}
reviewers = {r1}
sharedDoc = sd

WriterSection = {(w1, s1), (w2, s3)}
ReviewerSection = {(r1, s2)}

TheoremConsistencyCASystem

∃CollaborativeAuthoringSystem

• InitCASystem

4.2 Specification and Verification of Reconfiguration Operations

In this step, the architectural reconfiguration operations are specified formally
(examples of such operations are the insertion/removal of a component and/or
a relation between components). Each reconfiguration operation is specified by
means of a Z operation schema, which defines the input parameters (ci?) as well
as the pre-conditions and post-conditions. These conditions are essential to con-
trol the evolution of the architecture and to preserve certain system properties.
Reconfiguration operations are executed only if their pre-conditions are satisfied.
In the operation schema below, PreCondi and PostCondi denote a pre- and a
post-condition of the reconfiguration operation Operationi .

After specifying the reconfiguration operations formally, these operations
need to be verified. To evaluate the impact of a reconfiguration operation on
a constraint, we define and prove the theorem PreCondTheorem shown below.
This theorem states the pre-conditions that must initially be satisfied to guar-
antee that the constraints are preserved after the execution of the operation and
verify that the execution of the reconfiguration operation preserves the architec-
tural style.

Operationi

∆System

ci? : Componenti ; ...

PreCondi , ...,PreCondn

PostCondi , ...,PostCondn

TheoremPreCondTheorem

∀System ∧ c? : Componenti
| preConditions • preOperationi

Let us now illustrate the approach to specifying reconfiguration operations
by means of our collaborative authoring system. We have specified and validated
formally all its reconfiguration operations such as the insertion and connection
of writers, reviewers, and sections. For illustration, the following schema specifies
the operation ConnectWriter . The operation schema states that when a writer
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w? is connected to a section of the shared document then she should be one of
the writers that are already present in the system and the section s? should be
already created. In order to validate the connection operation of a new writer,
we use Z-EVES to prove the theorem PreConnectWriter , which ensures that
the connection of a writer is conform to the system constraints described in the
system schema CollaborativeAuthoringSystem. For example, this theorem states
that the connection of a writer to a section requires that no reviewer is connected
to that section (constraint C2 in page 7).

ConnectWriter

∆CollaborativeAuthoringSystem

w? : Writer

s? : Section

w? ∈ writers (C3)

s? ∈ sections (C4)

WriterSection ′ =

WriterSection ∪ {(w?, s?)}
......

TheoremPreConnectWriter

∀CollaborativeAuthoringSystem;

w? : Writer ; s? : Section

| w? ∈ writers ∧ s? ∈ sections

∧ (∀ r : reviewer •∧ (r , s?) 6∈ ReviewerSection)

...

• preConnectWriter

4.3 Specification of Valid Protocols

In this step, Petri nets are used to define constraints on the execution order of
reconfiguration operations that are already specified in Z. Typical behaviors in
distributed component-based applications such as synchronization, mutual ex-
clusion, conflicts, etc., can be naturally specified with Petri nets. We model each
reconfiguration operation by a transition and a system state by a set of places
and tokens. Enabling a transition in the Petri net means that the correspond-
ing reconfiguration operation is conform with the constraints given the current
system state. Consequently, the transition can be executed and its target places
can be occupied by tokens.

In our collaborative authoring system, the writers can create, modify, and
delete sections. Then, the reviewers can correct these sections and add annota-
tions. To enforce the activity order described above, we define a coordination
protocol, which requires that each section must be created or modified by a
writer before it becomes accessible to reviewers for correction. In addition, af-
ter a section is corrected, the next reviewer cannot revise it before an author
modifies it.

In the initial state that is shown in Fig. 2, the transitions InsertWriter and
InsertReviewer are always enabled. Consequently, the transition ConnectWriter
will be enabled. Thus, a writer can connect to a section. After the enabling of
the transition DisconnectionWriter , the writer can be deleted but she cannot
connect because there is no tokens in P8. However, a reviewer can still connect
because the transition ConnectReviewer is enabled.
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InsertWriter InsertReviewer

DeleteWriterDeleteReviewer

P1P2

P3P4

P5P6

P7

ConnectWriterConnectReviewer

DisConnectWriterDisConnectReviewer

.

.P8P9

Fig. 2. A Petri net example

5 Mapping Formal Specifications to Code

This section describes how formal specifications are mapped to code. The map-
ping of the specifications pertaining to individual components and to the overall
system architecture are done manually. The focus of this paper is on mapping
cross component specifications related to reconfiguration operations and their
valid protocols. This mapping is done semi-automatically by translating specifi-
cations to aspects in the AspectJ language.

5.1 Components Implementation

In this phase, the user provides the functional code that implements the different
components of the application. The functional code of the components can be
implemented using Java or a Java-based component model such as EJB [21]. We
focus on applications that are based on a client-server architecture.

The functional code should be conform with the formal specification of the
components and their relations. For example, if the formal specification states
that a certain component has some attribute then the class that implements that
component should have a field that matches that attribute. However, enforcing
the formal specifications pertaining to individual components is out of the scope
of this paper. Our focus is rather on the enforcement of cross-component con-
trol and/or coordination invariants, as elaborated in the following subsection.
It is important to emphasize that in our approach the functional code does not
contain any control and/or coordination functionality.
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Our collaborative authoring application is implemented as a client-server ap-
plication. The functional level comprises only code providing the core function-
alities. The writers can create shared documents and modify or delete sections.
The reviewers can correct a section by adding an annotation or by modifying
the section formatting (i.e., they cannot edit the text but they can change text
fonts and colors). Control code, e.g., to avoid overlaps between sections, is not
encoded in these components.

5.2 Mapping Cross-Component Invariants to Aspects

In order to support a generic, reliable, and modular control of component-based
applications in Java, formal specifications of reconfiguration operations and valid
protocols thereof are semi-automatically mapped to AspectJ aspects in our ap-
proach. That is, the control layer consists of a set of aspects (one per reconfigu-
ration operation); the pointcuts intercept the execution of operations from the
component implementation layer that correspond to reconfiguration operations;
the advice consult the current system state to check whether the reconfiguration
operations can be executed; if this is the case, the advice execute the recon-
figuration operations and update the system state accordingly. In other words,
the aspects of the control level connect the formal level and the functional level
in order to control the evolution of the architecture according to the formally
specified constraints.

Each aspect contains two parts: the coordination part and the control part.
The coordination part check and enforce the coordination protocols that are de-
fined by Petri nets. This part verifies whether the respective transition in the
Petri net is enabled based on the current system state. The control part corre-
sponds to code that checks for the respective operation whether the preconditions
formally specified in Z within the style schema and the operation schema are sat-
isfied. If that is the case, the aspect executes the reconfiguration operation, and
after that updates the state of the system. Otherwise, the aspect prohibits the
execution of the operation.

In addition to Z and Petri net specifications, the generation process also takes
a mapping of the reconfiguration operations to points during the execution of
the functional code as an input.

1 <Mapping Name="CollaborativeAuthoringSystem">
2 <PointCut Reference="InsertWriter">
3 InsertW(Writer w):
4 call(public * insertW(..))&& target(w); </PointCut>
5 <PointCut Reference="ConnectWriter" Component="Section">
6 ConnectWriterToSection(Writer w,Section s):
7 call(public * connectW(..)) && target(w) && args(s); </PointCut>
8 ...
9 </Mapping>

Listing 1.1. Mapping formal specification to code

This mapping is provided by the developer using an appropriate XML file.
For illustration, the extract shown in Listing 1.1 maps the reconfiguration oper-
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ation ConnectWriter , defined in the formal specification, to calls to the method
connectW (lines 5–7 in the Listing 1.1) from the functional level.

To automatically translate Z specifications to aspects, the specifications should
be structured according to a meta-model, which ensures some properties. For in-
stance, the system and its components must be specified in the Z schema form,
the connections between the components must be specified in the form of a re-
lation, etc. To verify that the Z specification is compliant with this meta-model,
we translate the structure of the Z specification into an XML file. Moreover, we
defined an XML Schema Definition (XSD) for the meta-model. We use DOM and
SAX to verify whether the XML representation of the Z specification satisfies
the XSD of the meta-model.

The code generator gathers all necessary information to generate the aspects.
It extracts the properties of the components, the relations between components
and the architectural constraints which are specified in the system schema and
in the operation schemes.

For each reconfiguration operation, which corresponds to a Z operation schema
and/or to a transition in the Petri net, the pre-conditions are translated to
around advice, which coordinates and controls their execution, as schematically
shown in line 5 of Listing 1.2. The generated advice is associated with a pointcut
that is provided by the user in the XML mapping file (cf. line 2 in the Listing
1.2).

The work-flow of the generated around advice is as follows. The advice first
checks whether the Petri net transition for the corresponding reconfiguration
operation is enabled. For that purpose, the generated advice contains a call to
the method isTransitionEnabled (line 8 in the Listing 1.2), which applies the
rule R1 (cf. Section 2.2). Next, the advice checks whether all preconditions1 of
the corresponding reconfiguration operation are fulfilled. If one of the generated
pre-conditions is not fulfilled the operation will not be executed (lines 22-26).
Otherwise, the operation will be executed by calling proceed (line 23).

The constraints specified in the operation schema (line 11) and the con-
straints without quantifications (line 14) specified in the system schema are
evaluated. Next, constraints that use quantification operators are evaluated by
calling auxiliary methods generated for them (e.g., method checkConstraintCi

in Listing 1.2).
In addition to aspects, the generator emits a Java class that stores the current

state of the system in terms of components (characterized by their attributes)
and the relations between them. Each generated aspect implements a method
updateSystemState (line 33), which updates the current state of the system (in-
cluding the marking by applying the rule R2 (cf. Section 2.2)), if the reconfigura-
tion operation can be executed. This method is called in the aspect after proceed
(line 24 in Listing 1.2).

1 The translation of the preconditions of reconfiguration operations into Java code
makes use of a Java-based package of Z that contains classes representing the el-
ements of the Z language such as operators, mathematical objects such as sets,
relations, sequences, bags, etc.
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1 //extract the pointcut from the mapping file
2 public pointcut PointCutName (parameters1): set of join points
3

4 //The around advice for controlling the reconfiguration operation
5 void around(parameters1): PointCutName(parameters1) {
6

7 // check if the Petri net transition is enabled
8 if (isTransitionEnabled (CurentMarking, respectiveTransistion)) { ...}
9

10 // evaluate the constraints defined in the operation schema
11 if (ZOperators(parameters2, SystemState)) { ... }
12

13 // evaluate constraints without quantifications defined in the system schema
14 if (ZOperators(parameters3, SystemState)) { ... }
15

16 // call the auxiliary method for evaluating constraints with quantification
17 ...
18 if (checkConstraintCi()) { ... }
19 ...
20

21 // verify that all constraints hold and proceed if this is the case.
22 if (allConstraints) {
23 proceed(parameters1);
24 updateSystemState(parameters4);
25 }
26 else { ... }
27 }
28

29 // helper method for evaluating constraints with quantification
30 public boolean checkConstraintC_i() { ... }
31

32 // the method for updating the system state
33 void updateSystemState(parameters4) { ... }
34 }

Listing 1.2. Template of aspect generation

For illustration, let us consider the control and coordination aspects gen-
erated for our collaborative authoring system. Each reconfiguration operation
(e.g., insert writer, connect reviewer, delete section, ...) corresponds to a Z oper-
ation schema in the formal specification of the architectural style and to a Petri
net transition in a coordination protocol. For each reconfiguration operation, an
AspectJ aspect is automatically generated.

The aspect shown in Listing 1.3 controls the connection of a writer to a
section. This operation is specified by the Z operation schema and the Petri net
transition called ConnectWriter . The pointcut ConnectWriterToSection of this
aspect is taken by the aspect generator from the XML mapping file. The around
advice of this aspect controls the execution of the operation ConnectWriter . For
example, the constraints C3 and C4 from the Z operation schema connectWriter
(page 9) are translated to calls to the method isMemberOf of a Z operator
package that we implemented (lines 11 and 12 in the Listing 1.3). Quantified
constraints such as the constraint C1, which ensures that a writer or reviewer
can modify only one section at a given point of time, and the constraint C2,
which disallows overlaps between sections are translated to Java code by using
help methods. For instance, a help method checkConstraintC2 (lines 26–46) is
generated to evaluate the constraint C2. This help method is called in the advice
(line 15).
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1 public aspect EnforceConstraintsForConnectWriter {
2 pointcut ConnectWriterToSection(Writer w,Section s):
3 call(public * connectW(..)) && target(w) && args(s);
4

5 void around(Writer w, Section s): ConnectWriterToSection(w,s)
6 {
7 ...
8 if (isTransitionEnabled (CurentMarking, ConnectWriterTransistion)) { ...}
9

10 ...
11 if (isMemberOf(wInput,SystemState.writers)) { ... } //Constraint C3
12 if (isMemberOf(sInput,SystemState.sections)) { ... } //Constraint C4
13 ...
14 if (checkConstraintC1()) { ... }
15 if (checkConstraintC2()) { ... }
16 ...
17 if (allConstraints) {
18 proceed(w,s);
19 updateSystemState(w,s);
20 }
21 else { ... }
22 }
23

24 boolean checkConstraintC1() { ... } //Constraint C1
25

26 boolean checkConstraintC2() { //Constraint C2
27 boolean constraints, result0, result1, result2 = true;
28 String [] Tab0 = SystemState.Newreviewers;
29 while ((Tab0.length!=0) && result0) {
30 String r = getFirstElement(Tab0);
31 String [] Tab1 = SystemState.Newwriters;
32 }
33 while ((Tab1.length!=0) && result1) {
34 String w = getFirstElement(Tab1);
35 String [] Tab2 = SystemState.Newsections;
36 }
37 while ((Tab2.length!=0)&& result2) {
38 String s = getFirstElement(Tab2);
39 constraints = Or(isNotMemberOf(w, s,SystemState.NewWriterSection),
40 isNotMemberOf(r, s,SystemState.NewReviewerSection));
41 result2 = result2 && constraints;
42 result1 = result1 && constraints;
43 result0 = result0 && constraints;
44 }
45 return result0;
46 }
47

48 void updateSystemState(String NameW, String NameS) { ... }
49 }

Listing 1.3. Example of the AspectJ Code generated

The advice contains also Java code to ensure that the coordination protocols
are respected. For example, we specified in the Petri net shown in Figure 2 that a
writer cannot modify a section unless a reviewer has corrected it. The generated
advice contains a call to the method isTransitionEnabled (line 8) to check wether
the transition ConnectWriter is enabled given the current state of the system.

Moreover, the advice contains a method updateSystemState (lines 50), that
updates the system state that is stored in a generated class, which represents the
components of the systems, their relationships, and the marking of the Petri net.
If all generated constraints are evaluated to true, the respective operation will
be executed (using proceed) and the system state will be updated (lines 17–21).
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6 Related Work

We report on works on formal specification of software architecture, and aspect
and code generation from formal specification.

In Several works, different formal methods have been used for the specifica-
tion of software architectures. Some of these works used logic-based methods,
e.g., Temporal Logic [2] and Z notation [1]. Other used process algebras, e.g.,
CSP [8] and graphs, e.g., graph grammars [13] and graph Transformation [7]. In
[13], Métayer uses a graph grammar, which is based on a mathematical model, to
specify software architectures formally. This type of grammars does not support
certain logical properties such as reasoning about the number of component in-
stances and logical conditions such as absence of a communication link between
two software components. In [1], Gregory et al. propose using the Z notation
to analyze the architecture styles and the relation between them. However, this
work focuses only on the static aspects and does not address the dynamic aspects
and the evolution of the architecture.

The translation of formal specifications to code has been addressed in sev-
eral works. In [18], Ramkerthik and al. discuss the generation of Java code with
design contracts from an Object-Z2 Specification. This work translates the struc-
ture of Object-Z specifications to XML and then generates a Java skeleton by
processing the XML representation. However, it translates only the simple pred-
icates and the skeletons are not executable. Jia and al. [9] propose an approach
to synthesizing functional code from the UML and Z. They translate the UML
models into a Z specification, which is used to generate C++ code. This work is
related to ours, but it generates the preconditions code in the functional code,
which poses several problems of modularity and reuse as we already explained.

In more recent works, some proposals translated formal specifications into
aspect code. In [4], Bodden proposes a linear-time logic over join points to verify,
during the program execution, the temporal properties of certain actions (e.g.,
a temporal relationship between two methods calls) by alternating a finite state
whose transitions are triggered through generated aspects. Unlike our approach,
the approach of Bodden focuses only on temporal dependencies and does not
target the architecture of the application.

7 Conclusion

In this paper, we presented an approach, based on Aspect-Oriented Program-
ming and formal methods, for controlling the architecture evolution of component-
based distributed applications. This approach covers the static, the dynamic,
and the behavioral aspects of software architecture and enables a reliable and
modular control.

The reliability of our approach is ensured by formal specification and vali-
dation of architectural constraints using the Z notation and the tool Z/EVES.

2 Object-Z is an object-oriented extension of the formal specification language Z
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In addition, we use Petri nets to model the coordination protocols formally.
The use of an aspect-based control layer in our approach, allows us to separate
the control and coordination code from the functional code, which reduces the
complexity of the application, and avoids disconnections between the application
implementation and its formal specification. In addition, since the control code is
well-modularized in aspect, contradictions that may be introduced by program-
mers by mistake, when integrating the constraints into the functional code, are
less likely to happen. Moreover, with aspects, users can modify the formal speci-
fication of the application without modifying the application functional code. In
addition, the approach is user-friendly as the aspects are generated automatically
from the Z specifications and the Petri nets.

The automatic translation of Z specifications to Java code was quite difficult
to implement because of the high complexity of the Z notation. Moreover, some
constraints may use quantification operators several times. Thus, the resulting
aspects would be very large. The approach of generating aspects to enforce for-
mally specified constraints is generic, i.e., it can be applied for any component-
based application. In addition, we plan to use this approach in the context of
Web Service composition to ensure that interactions between a composite Web
Service, its partners, and its clients respect a formally specified protocol.

Another direction for our future work is to study expressive pointcut lan-
guages such as [3, 5, 14], which allow the expression of temporal relationships
in the pointcut to, e.g., express that a certain operation must be called before
another. We will also investigate whether and to what extent the usage of such
pointcut languages would replace the usage of Petri nets in our approach.
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